Beginner’s Guide

Programming with ABAP on HANA
by Pallavi Gupta, Accrete Solutions

What does this document have to offer?

The focus of this blog is to present an overview of the new programming techniques in ABAP after the introduction of HANA database. The
focus will be towards providing a guideline on why and how an ABAP developer should start transitioning its code to use the new coding
technique’s.

Who should be reading this?

Here the target audience would be ABAP developers who are looking forward to getting a basic understanding of ABAP on HANA programming
and to understand why to opt for these new features.

Areas covered in this blog...
Code to Data Paradigm, OpenSQL, CDS Views, AMDPs.
Let us begin!

SAP ABAP has been rapidly evolving over the years. With the introduction of S/4HANA, it went to graduate to become a far more impressive
and productive language. If you ask me how ABAP has improved then the answer is "Code-To-Data" Paradigm.

What is Code-To-Data Paradigm?

The traditional approach involves bringing data from database to our presentation server, doing the data intensive calculations & filtering and
then presenting the filtered data to a user.

The new HANA approach is to push our code to the database layer where all the data resides, do the calculations at database layer and bring
only the relevant records to ’

[Calculation

AS ABAP

—_—

sAP HDB

-

[Calculation |

Because of C2D paradigm, the delay caused due to the latency of bringing large volumes of data to presentation layer is removed drastically
resulting in high performance even with very large datasets.

To better understand this let me proceed using a basic scenario that any ABAP developer can easily relate to:

Example Scenario: An ALV report that returns the master data of “ALL” vendors and their addresses for vendors that are active, not marked for
central deletion, not marked for deletion under “ALL” company code, not marked for deletion under “ALL” purchasing organization.

In this scenario, the performance would suffer because of fetching data for all vendors, for all company codes & for all Purchasing Organization.
The resulting report will require a background run and the traditional ABAP report flow ,in this case, would fetch data as follows:

Vendor Master Wendar + \lendor +
LFA1 — Company Code |——4{ Purchasing Org
LFB1 LFM1
Addrass Details Internal Table of
ADRC f———] active vendors
GT_VENDORS

Output table with vendor master data and comesponding
vendor address data for all vendors active under both
company codes and Purchasing Organization

Here the presentation layer would interact with a couple of times if no joins are used under select statement. Moreover using joins to fetch
data from these tables would also be very slow because of large volumes of vendor data in the system. So how must | improve the
performance here?

Answer!- Code PushDown using
OpenSQL programming

CDS Views

ABAP Managed Database Procedures

Let us visit each of the above features that were introduced with HANA DB.
1.0penSQL Programming

With OpenSQL programming, you can write openSQL syntax in your ABAP code. The syntax for OpenSQL differs from that of ABAP, for
example, the fields in select statement are comma separated, all the host variables are escaped using ‘@’ sign, the concatenation can be done
in a single statement using ‘| |” and so on and so forth.

The above scenario will be written as follows:

» @ ZACT_VENDOR OSQL »
1 *E---
2 *& Rel
3 ego-
4 *& Ac sing opensQL
5 &---
5 REPCRT zact_vendor_osql.
7
3 GET RUN TIME FIELD data(lv_start_time).
9
16 SELECT a~lifnr, "field separated by commas
1| bbukrs,
12 c~ekorg,
13 d~namel,
14 decityl,
15 drregion,
16 d~country,
17 d~post_codel
18 INTO TABLE @DATA(gt_vendor) “inline declaration
19 FROM 1fal As a
208 INNER JOIN 1fbl AS b ON b~lifnr = a~lifnr "joins
21 INNER JOTN 1fml AS c ON c~lifnr = a~lifnr
22 LEFT OUTER JOIN adrc AS d ON d~addrnumber = a~adrnr
23 WHERE a~loevm EQ @abap_false
24 AND a~sperr EQ @abap_false
25 AND a~sperm EQ @abap_false
26 AND a~nodel EQ @abap_false
27 AND beloevm EQ @abap_false
28 AND besperr EQ @abap_false
29 AND c~loevm EQ @abap_false
30 AND c~sperm EQ @abap_false.

32 GET RUN TIME FIELD data(lv_end_time).
34 DATA(1v_time) = lv_end_time - lv_start time.
35

36 cl_demo_output=>display_data(EXPORTING value = gt_vendor
37 name = |Duration { lv_time } ms|). "string concatenation

Result:

2 UDUT

Duration 1621 ms

LFNR BUKRS EKORG NANE1 o REGION COUNTRY POST_CODE
0017300002 1710 1710 Domestic US Supplier2 Bismarck D Us 55044873
0017300273 1710 1710 Domestic US Supplier CRD San Diego CAUS 12609
0017300030 1710 1710 Domestic US Supplier 1099M Withholding T Boston WA US ootead0d
0017300031 1710 1710 Foreign US Supplier (DE) 10425 Withholdi Berlin BE DE 16X
0017300032 1710 1710 Domestic US Supplier 10396 Withholding T Boston MA - US o2teAd0d
0017300033 1710 1710 Domestic US Supplier 1039INT Wihhalding Boston WA US (2teEd0d
0017300034 4710 1710 Domestic US Supplier 1039K Withholding T Boston WA US (2te5d0d
(017300006 1710 170 Domestic US Supplier & (Retums) Wichita KSUs 67A233
(017300080 1710 170 Domestic US Supplier 80 (Ariba Netwark) ~ Newark DEUS 19700
(017300081 1710 1710 Domestic US Supplier 81 (Ariba Sourcing New SmymaBeachFL — US 321686867
(017300082 1710 170 Domestic US Supplier 82 (Anba Sourcing Palo Ato CA Us i
(017300083 1710 170 Domestic US Supplier 83 (Anba Sowrcing Albwouerque M US 871106409

Here you can see that report ran for 1621 ms and returned us the desired results.
This is a very basic example that | took but in real time scenarios where you may be doing some aggregations, or you may be to translating
some data during selection, or you may be grouping your result set based on some fields then the OpenSQL really does magic.

SAP has introduced a large number of syntax that can be utilized in the code to improve its performance. To start with you can find very
descriptive examples and code snippets in the ABAP glossary itself.

SAP has introduced a large number of syntax that can be utilized in code to improve its performance. To start with you can find very descriptive
examples and code snippets in the ABAP glossary itself.

2. Core Data Services (CDS) Views

SAP introduced a new data modeling infrastructure known as core data services or CDS. With CDS, data models are defined and consumed on
database server rather than on application server. As a result, the table result view is created at the database level. CDS are completely
compatible with openSQL and can be written using ABAP development tools like Eclipse Oxygen. These can be consumed by reports and
AMDPs as well.

The above code will be created as a data definition in Eclipse and defined as follows:

1% ({AbapCatalog. sqlviewliane: 'ZCDS_ACT VEN' //this 1s SQL view name that u can see in SE1L
1 (iAbapCatalog. conpiler. compareFilter: true

3 ([fAccessControl.authorizationCheck: $CHECK

4 (EndUserText.label: 'CDS View data definition’

5 define view ZCDS_ACT VENDOR //C0S view name

6 asselect from Ifal as a

7 inner join 1fbl as b on a.lifnr = b.1ifnr and b.sperr =
8

9

inner join 1fnl as ¢ on a.lifnr = c.lifnr and c.spern =
left outer join adrc as d on a.adrnr = d.addrnunber

1 {

11 key a.lifnr,

12 key b.bukrs,

13 key c.ekorg,

14 d.namel,

15 d.cityl,

16 d.region,

17 d.country,

18 d.post_codel

19} uhere a.loevm =

2 F

and a.sperr = " and a.sperm =

Result:

b (B 2005 ACT VENDOR »

n Raw Data ‘ @
\‘\ 45 rows retrieved - 39 ms \‘\ S0L Console Data Aging ‘ 11 Number of Entries Selec
ol w buks e ekorg onamel e cityl e region ® cownty e post code]

0017300002 1710 1710 Domestic US... Bismerck ~ ND s 58305573

0017300273 1710 1710 DomesticUS.. SanDiego (A s 92128-10%

017300030 1710 1710 Domestic US... Boston MA s (2116-3404

0017300031 1710 1710 Foreign USS... Berlin BE DE 12627

0017300032 1710 1710 Domestic US... Boston MA s (2116-3404

0017300033 1710 1710 Domestic US... Baston MA s (2116-3404

0017300034 1710 170 Domestic US... Boston MA s (2116-3404

0017300006 1710 1710 DomesticUS.. Wichita ~ KS s 7202373

0017300080 1710 1710 Domestic US.. MNewatk DE s 19725-0001

0017300081 1710 1710 Domestic US.. New Smyr., FL s 32168-3667

0017300082 1710 1710 DomesticUS.. PaloAtte CA s 31112

0017300083 1710 1710 Domestic US.. - Albuquerg., NM s 87110-3409

017300007 1710 1710 Domestic US. Blacksburg VA s 24060-7208

0017300090 1710 1710 DomesticUS.. ElDoade AR s TI731-7000

FWMITS 170 1 FWM Sunnli - Btlanta) 115 mu

The CDS view returned the result in 39ms. Awesome? Yes, it is.

Now CDS views could also be created with parameters or with associations. You may choose to create a CDS with parameters if you have a
fixed result set and some input parameters to pass.

You could also create a CDS with the association for a similar scenario if you have many tables to address in the view and if you want to keep
the result set flexible.

3. ABAP Managed Database Procedures (AMDP)

AMDPs, as the name says, are database procedures that run on the database directly and are written directly in ABAP. AMDPs are written
using AMDP classes. Below is an example using the above scenario of how to create an AMDP class. The interface
“IF_AMDP_MARKER_HDB" distinguishes an AMDP class from other classes.

Class definition:

1% CLASS zcl_act_vendor_amdp DEFINITION PUBLIC FIMAL CREATE PUBLIC .

2

E} PUBLIC SECTION.

4 INTERFACES if_amdp_marker_hdb.

s

3 TYPES: BEGIN OF ty_wvendor,

7 1ifnr TYPE lifnr,

8 bukrs TYPE bukrs,

9 ekorg TYPE ekorg,

10 namel TYPE namel,

11 cityl TYPE adrc-cityl,

12 region TYPE adrc-region,

13 country TYPE adrc-country,

14 post_codel TYPE adrc-post_codel,

1s END OF ty_wendor,

16

17 tt_wendor TYPE SORTED TABLE OF ty_wendor WITH NON-UNIQUE KEY lifnr bukrs ekorg.
18

19 METHODS get_vendors_amdp IMPORTING WALUE(lv_clnt) type mandt

20 EXPORTING VALUE(1lt wendor) TYPE tt_wendor.

21 ENDCLASS.

Similarly, an AMDP class implementation will have methods defined with a syntax “BY DATABASE PROCEDURE FOR <database> LANGUAGE
<language>. In our case database will be HDB (HANA DB) and language will always be SQLSCRIPT.

35 CLAS cl_act_wvendor_amdp IMPLEMENTATION.

FE O get_wendors_amd

5 DATABASE PROCEDURE FOR HDB LANGUAGE SQLSCRIPT

5 OPTIONS READ-ONLY USING 1fal 1fbl 1fml adrc.

7

3 1t_wendor = SELECT DISTINCT a.lifnr,|

El b.bukrs,

E) c.ekorg,

1 d.namel,

2 d.cityl,

3 d.region,

1 d.country,

5 d.post_codel

5 FrROM 1fal AS a

7 INNER JOIN 1fbl AS b ON b.mandt = a.mandt and b.lifnr = a.lifnr AND b.loevm = " and b.sperr =
B INNER JCIN 1lfml AS ¢ ON c.mandt = a.mandt and c.lifnr = a.lifnr AND c.loevm = " and c.sperm =
5 LEFT OUTER JOIN adrc A5 d ON d.client = a.mandt and d.addrnumber = a.adrnr
3 WHERE a.mandt = lwv_clnt

1 and a.loewvm = °°

2 and a.sperr =

3 . and a.sperm =

2 H

5 EnD

This AMDP class can then be consumed in an ABAP program to achieve the code push down functionality.

d FBim m e mm e m e e
2 *& Report z_act_wvendor_amdp

3 & -

a =&

5 =a____

6 REPORT z_act_wendor_amdp.

7 TYPES: BEGIN OF ty_wendor,

8 lifnr TYPE lifnr,

a bukrs TYPE bukrs,

1@ ekorg TYPE ekorg,

11 namel TYPE namel,

12 cityl TYPE adrc-cityl,

13 region TYPE adrc-region,

14 country TYPE adrec-country,

15 post_codel TYPE adrc-post_codel,

16 END OF ty_vendor.

17 DATA: gt vendors TYPE SORTED TABLE OF ty wendor WITH NON-UNIQUE KEY lifnr bukrs ekorg.
18

19 GET RUN TIME FIELD DATA(gv_start).
20 DATA(go_ref) = NEW zcl_act_vendor_amdp().

22 go_ref->get_vendors_amdp(EXPCRTING lv_clnt = sy-mandt
23 IMPORTING 1lt_vendor = gt_wvendors).
24

25 GET RUN TIME FIELD DATA(gv_end).
26 DATA(gv_time) = gv_end - gv_start.|

28 cl_demo_output=>display_datal value
29 name

gt_vendors
|puration { gv_time }ms|).

This AMDP class can then be consumed in an ABAP program to achieve the code push down functionality.
Result:

Duration 3573ms

LIFNR BUKRS EKORG NAME1 CITY1 REGION COUNTRY POST_CODE1
0010200001 1010 1010 Supplier/Customer for Intrasta Budapest HU 1032
0010300001 1010 1010 Inlandslieferant DE 1 Haltern am See MW DE 45721
0010300002 1010 1010 Inlandslieferant DE 2 Gotha T™H DE 99867
0010300006 1010 1010 Inlandslieferant DE 6 (Retoure Hamburg HH DE 22767
0010300007 1010 1010 Inland-Lohnbearbeiter A, DE Alleringersleben ST DE 39343
0010300080 1010 1010 Inlandslisferant DE (Ariba Met Bremen HB DE 28199
0010300081 1010 1010 Inlandslieferant DE (Ariba Sou Aachen NW DE 52062
0010300082 1010 1010 Inlandslieferant DE (Ariba Sou Bremen HB DE 28207
0010300083 1010 1010 Inlandslieferant DE (Ariba Sou Stuttgart BW DE 70184
0010300090 1010 1010 Inlandslieferant DE (Ariba FIN Karlsruhe BW DE 76133
0010300273 1010 1010 Inlandslieferant DE CPD Mannheim BW DE 68159
nnA7INANNA 474N 474N i " H Aiinein (LA} ne ATINE ATET

What to choose OpenSQL or CDS or AMDP?
A question that would arise in any developers mind would be how to make a choice amongst the three programming techniques.

In the above example, you can see that the performance was CDS > OpenSQL > AMDP. Does that mean for the above scenario the best
choice is to create a CDS? Not exactly!

If 1 do not reuse the CDS view then openSQL could be an equally effective choice.

Also, note that CDS views and AMDP can only be created using ABAP Development Tools like Eclipse Oxygen. Refer the following link to
understand how to get eclipse on your system:

https://tools.hana.ondemand.com/#abap

There are no rules that can be adhered to when choosing from the above three programming techniques. It completely depends on the
requirement and on what and how data needs to be handled. However, the points below can give an idea on how to proceed to make the
most productive choice.

Choose Open SQL when:

1.The table selection is program specific and will not be reused

2.When you do not have an ABAP Development Tool to create CDS or AMDP. The two can be consumed in GUI but cannot be created in GUI.
3.When the data in question does not involve intensive calculations and can be managed easily by OpenSQL.
4.When you have a tricky selection screen with a lot of select options that will be passed as single values too.
Choose CDS views when:

1.The view can be reused among other views or programs.

2.When a large volume of data is involved from various data sources.

3.When you have good knowledge on how to write annotations to enhance your CDS view.

4.0nly single result set is required.

Choose AMDPs When:

1.You are affluent with SQL scripting because your entire code will be written in SQL script and the compiler fails in determining the runtime
SQL script errors like divide by zero.

2.When you have to handle cross client data because AMDP does not do client handling on its own.
3.When multiple result sets are required.

This blog was to give you a kick start on what HANA has to offer and what you can do with the new techniques. My advice to any beginner
would be to get your hands on a system and just try.

For all enquiries please contact at : corp@accretesol.com , Tel : +1(877)-849-5838
Visit us at : www.accrete-solutions.com

USA South Africa Chile India

Head Office 609 Lanseria Corporate Estate, Galvarino Gallardo 1638, Development Centre

3350 Scott Blvd, Bldg 34 Falcon Lane, Lanseria, Providencia, 102A, HARTRON, Electronics City,
Santa Clara, CA 95054 Gauteng Santiago Gurgaon

Copyright © Accrete Solutions 2018. All rights reserved.

https://tools.hana.ondemand.com/#abap

